

The first results of the Muon g-2 experiment at Fermilab

Prof. Dr. Martin Fertl Muon g-2 Symposium University of Stavanger April 22nd, 2021

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Outline

Status of theory vs. experiment before April 7th, 2021

The Muon g-2 experiment at FNAL

- The measurement principle
- The muon source
- The muon storage ring and its instrumentation

The data analysis chain

- The anomalous spin precession frequency and its corrections
- The precision magnetic field and its corrections

The result

Charged particle with magnetic dipole moment and spin

$$\overrightarrow{\mu} = g \frac{q}{2m} \overrightarrow{s}$$

M. Fertl - Stavanger, April 22nd 2021

Charged particle with magnetic dipole moment and spin

$$\vec{\mu} = g \frac{q}{2m} \vec{s}$$

For a point-like charged lepton with spin 1/2 Dirac predicts g = 2(P. Dirac, The Quantum Theory of the Electron, Proc. R. Soc. Lond. A 1928 **117**)

This differs from (1) by the two extra terms

$$rac{eh}{c}(\,m{\sigma},\,\mathbf{H})+rac{ieh}{c}\,m{
ho}_1\,(\,m{\sigma},\,\mathbf{E})$$

in F. These two terms, when divided by the factor 2m, can be regarded as the additional potential energy of the electron due to its new degree of freedom. The electron will therefore behave as though it has a magnetic moment eh/2mc. σ and an electric moment ieh/2mc. $\rho_1 \sigma$. This magnetic moment is just that assumed in the spinning electron model. The electric moment, being a pure imaginary, we should not expect to appear in the model. It is doubtful whether the electric moment has any physical meaning, since the Hamiltonian in (14) that we started from is real, and the imaginary part only appeared when we multiplied it up in an artificial way in order to make it resemble the Hamiltonian of previous theories.

M. Fertl - Stavanger, April 22nd 2021

Charged particle with magnetic dipole moment and spin

$$\vec{\mu} = g \frac{q}{2m} \vec{s}$$

For a point-like charged lepton with spin 1/2 Dirac predicts g = 2

(P. Dirac, The Quantum Theory of the Electron, Proc. R. Soc. Lond. A 1928 117)

This differs from (1) by the two extra terms

$$rac{eh}{c}(\,m{\sigma}\,,\,{f H})+rac{ieh}{c}\,
ho_1\,(\,m{\sigma}\,,\,{f E}$$

in F. These two terms, when divided by the factor 2m, can be regarded as the additional potential energy of the electron due to its new degree of freedom. The electron will therefore behave as though it has a magnetic moment eh/2mc. σ and an electric moment ieh/2mc. $\rho_1 \sigma$. This magnetic moment is just that assumed in the spinning electron model. The electric moment, being a pure imaginary, we should not expect to appear in the model. It is doubtful whether the electric moment has any physical meaning, since the Hamiltonian in (14) that we started from is real, and the imaginary part only appeared when we multiplied it up in an artificial way in order to make it resemble the Hamiltonian of previous theories.

M. Fertl - Stavanger, April 22nd 2021

Charged particle with magnetic dipole moment and spin

$$\vec{\mu} = g \frac{q}{2m} \vec{s}$$

For a point-like charged lepton with spin 1/2 Dirac predicts g = 2

(P. Dirac, The Quantum Theory of the Electron, Proc. R. Soc. Lond. A 1928 117)

This differs from (1) by the two extra terms

$$rac{eh}{c}(\,m{\sigma}\,,\,{f H})+rac{ieh}{c}\,
ho_1\,(\,m{\sigma}\,,\,{f E})$$

in F. These two terms, when divided by the factor 2m, can be regarded as the additional potential energy of the electron due to its new degree of freedom. The electron will therefore behave as though it has a magnetic moment eh/2mc. σ and an electric moment ieh/2mc. $\rho_1 \sigma$. This magnetic moment is just that assumed in the spinning electron model. The electric moment, being a pure imaginary, we should not expect to appear in the model. It is doubtful whether the electric moment has any physical meaning, since the Hamiltonian in (14) that we started from is real, and the imaginary part only appeared when we multiplied it up in an artificial way in order to make it resemble the Hamiltonian of previous theories. EDM searches are another powerful SM test!

M. Fertl - Stavanger, April 22nd 2021

Experiment (BNL E821): $a_{\mu}^{\text{BNL}} = 116592089 \pm 63 \text{ (540 ppb)}$ Total SM prediction: $a_{\mu}^{\text{SM}} = 116591810 \pm 43 \text{ (368 ppb)}$

M. Fertl - Stavanger, April 22nd 2021

Experiment (BNL E821): $a_{\mu}^{\text{BNL}} = 116592089 \pm 63 \text{ (540 ppb)}$ Total SM prediction: $a_{\mu}^{\text{SM}} = 116591810 \pm 43 \text{ (368 ppb)}$

Discrepancy:

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (279 \pm 76) \times 10^{-11}$$

Experiment (BNL E821): $a_{\mu}^{\text{BNL}} = 116592089 \pm 63 \text{ (540 ppb)}$ Total SM prediction: $a_{\mu}^{\text{SM}} = 116591810 \pm 43 \text{ (368 ppb)}$

Discrepancy:

 $\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (279 \pm 76) \times 10^{-11}$

Evolved to 3.7 σ deviation between SM and BNL experiment!

M. Fertl - Stavanger, April 22nd 2021

Experiment (BNL E821): $a_{\mu}^{\text{BNL}} = 116592089 \pm 63 \text{ (540 ppb)}$ Total SM prediction: $a_{\mu}^{\text{SM}} = 116591810 \pm 43 \text{ (368 ppb)}$

Discrepancy:

 $\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (279 \pm 76) \times 10^{-11}$

Evolved to 3.7 σ deviation between SM and BNL experiment!

Goal of the Muon g-2 experiment at Fermi National Laboratory

A *relativistic* charged lepton circulating a homogenous magnetic field experiences two effects:

M. Fertl - Stavanger, April 22nd 2021

A *relativistic* charged lepton circulating a homogenous magnetic field experiences two effects:

Cyclotron motion

Equilibrium between centrifugal and Lorentz force

Cyclotron frequency

$$\overrightarrow{\omega}_{\rm c} = -\frac{Qe}{m\gamma}\overrightarrow{B}$$

A *relativistic* charged lepton circulating a homogenous magnetic field experiences two effects:

Cyclotron motion

Equilibrium between centrifugal and Lorentz force

Cyclotron frequency

$$\overrightarrow{\omega}_{\rm c} = -\frac{Qe}{m\gamma}\overrightarrow{B}$$

Coupling of magnetic moment and field

Spin precession

Larmor frequency

$$\overrightarrow{\omega}_{\rm s} = -g\frac{Qe}{2m}\overrightarrow{B} - (1-\gamma)\frac{Qe}{\gamma m}\overrightarrow{B}$$

A *relativistic* charged lepton circulating a homogenous magnetic field experiences two effects:

Cyclotron motion

Equilibrium between centrifugal and Lorentz force

Cyclotron frequency

Coupling of magnetic moment and field

Spin precession

Larmor frequency

$$\vec{\omega}_{\rm c} = -\frac{Qe}{m\gamma}\vec{B} \qquad \qquad \vec{\omega}_{\rm s} = -g\frac{Qe}{2m}\vec{B} - (1-\gamma)\frac{Qe}{\gamma m}\vec{B}$$

Anomalous spin precession frequency

$$\vec{\omega}_{a} = \vec{\omega}_{s} - \vec{\omega}_{c} = -\left(\frac{g-2}{2}\right)\vec{B} = -a\frac{Qe}{m}\vec{B}$$

M. Fertl - Stavanger, April 22nd 2021

A *relativistic* charged lepton circulating a homogenous magnetic field experiences two effects:

Cyclotron motion

Equilibrium between centrifugal and Lorentz force

<u>Cyclotron frequency</u>

$$\overrightarrow{\omega}_{\rm c} = -\frac{Qe}{m\gamma}\overrightarrow{B}$$

Coupling of magnetic moment and field

Spin precession

Larmor frequency

$$\overrightarrow{\omega}_{\rm s} = -g\frac{Qe}{2m}\overrightarrow{B} - (1-\gamma)\frac{Qe}{\gamma m}\overrightarrow{B}$$

Anomalous spin precession frequency

$$\vec{\omega}_{a} = \vec{\omega}_{s} - \vec{\omega}_{c} = -\left(\frac{g-2}{2}\right)\vec{B} = -a\frac{Qe}{m}\vec{B}$$
Independent of
particle momentum!

M. Fertl - Stavanger, April 22nd 2021

A *relativistic* charged lepton circulating a homogenous magnetic field experiences two effects:

Cyclotron motion

Equilibrium between centrifugal and Lorentz force

Cyclotron frequency

$$\overrightarrow{\omega}_{\rm c} = -\frac{Qe}{m\gamma}\overrightarrow{B}$$

Coupling of magnetic moment and field

Spin precession

Larmor frequency

$$\overrightarrow{\omega}_{\rm s} = -g\frac{Qe}{2m}\overrightarrow{B} - (1-\gamma)\frac{Qe}{\gamma m}\overrightarrow{B}$$

Anomalous spin precession frequency

$$\vec{\omega}_{a} = \vec{\omega}_{s} - \vec{\omega}_{c} = -\left(\frac{g-2}{2}\right)\vec{B} = -a\frac{Qe}{m}\vec{B}$$

M. Fertl - Stavanger, April 22nd 2021

6

Independent of particle momentum!

For muons moving relativistically in a superposition of general electric and magnetic fields

$$\overrightarrow{\omega}_{a} = \overrightarrow{\omega}_{s} - \overrightarrow{\omega}_{c} = -\frac{e}{m} \left[a_{\mu} \overrightarrow{B} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\overrightarrow{\beta} \cdot \overrightarrow{B} \right) \overrightarrow{\beta} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\overrightarrow{\beta} \times \overrightarrow{E}}{c} \right]$$

M. Fertl - Stavanger, April 22nd 2021

For muons moving relativistically in a superposition of general electric and magnetic fields

$$\vec{\omega}_{a} = \vec{\omega}_{s} - \vec{\omega}_{c} = -\frac{e}{m} \left[a_{\mu} \vec{B} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$
Non-relativistic and circular motion limit

For muons moving relativistically in a superposition of general electric and magnetic fields

$$\vec{\omega}_{a} = \vec{\omega}_{s} - \vec{\omega}_{c} = -\frac{e}{m} \left[a_{\mu} \vec{B} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$
Non-relativistic and circular motion limit Vertical muon motion along the magnetic field lines "pitch correction"

The muon g-2 experiment at Fermilab

M. Fertl - Stavanger, April 22nd 2021

The Muon g-2 collaboration

Domestic Universities

Boston Cornell Illinois James Madison Kentucky Massachusetts Michigan Michigan State Mississippi Northern Illinois Regis UT Austin Virginia Washington National Labs

Argonne Brookhaven Fermilab

China

Shanghai Jao Tong University United Kingdom Lancaster Liverpool University College London

Italy

Frascati Molise Naples Pisa Roma 2 Trieste Udine

Germany

JGU Mainz TU Dresden Russia JINR/Dubna Novosibirsk

South Korea

CAPP/IBS KAIST

Muon g-2 Collaboration

7 countries, 35 institutions, 190 collaborators

M. Fertl - Stavanger, April 22nd 2021

Figure courtesy: M. Convery

M. Fertl - Stavanger, April 22nd 2021

A bright source of pulsed polarized muons is needed!

Figure courtesy: M. Convery

M. Fertl - Stavanger, April 22nd 2021

Figure courtesy: M. Convery

M. Fertl - Stavanger, April 22nd 2021

A bright source of pulsed polarized muons is needed!

8 GeV p⁺ strike target, 120 ns bunch length

Figure courtesy: M. Convery

M. Fertl - Stavanger, April 22nd 2021

A bright source of pulsed polarized muons is needed!

8 GeV p⁺ strike target, 120 ns bunch length

8 bunches spaced by 10 ms, second bunch train 200 ms later

Figure courtesy: M. Convery

M. Fertl - Stavanger, April 22nd 2021

A bright source of pulsed polarized muons is needed!
8 GeV p⁺ strike target, 120 ns bunch length
8 bunches spaced by 10 ms, second bunch train 200 ms later

Pion production in the target:

 $p^+ + p^+ \rightarrow p^+ + n + \pi^+$

Figure courtesy: M. Convery

A bright source of pulsed polarized muons is needed!

8 GeV p⁺ strike target, 120 ns bunch length

8 bunches spaced by 10 ms, second bunch train 200 ms later

Pion production in the target:

 $p^+ + p^+ \rightarrow p^+ + n + \pi^+$

Focus the "debris" into a momentum selective beam line

 ν_{μ} must be left-handed $\rightarrow \mu^{+}$ also left-handed!

Figures: K.S. Khaw, PhD thesis, ETH Zürich, 2015

The weak interaction is not left-right-symmetric!

Figure: R. Hahn, Fermilab in the context of "Charge-parity violation" https://www.symmetrymagazine.org/article/charge-parity-violation M. Fertl - Stavanger, April 22nd 2021

Figure courtesy: M. Convery M. Fertl - Stavanger, April 22nd 2021

M2/M3 optimized to transport positive particles with $p = 3.094 \,\text{GeV/c} \pm 2\,\%$

M. Fertl - Stavanger, April 22nd 2021

The Fermilab muon campus

M2/M3 optimized to transport positive particles with $p = 3.094 \,\text{GeV/c} \pm 2\,\%$

At the end of M2 and M3 beam line:

- 80% of pions have decayed to muons (polarization ~95%)
- 20% beam contamination:

decay e^+ , surviving π^+ , p^+ from the primary beam

Figure courtesy: M. Convery

M. Fertl - Stavanger, April 22nd 2021

The Fermilab muon campus

M2/M3 optimized to transport positive particles with $p = 3.094 \text{ GeV/c} \pm 2\%$

At the end of M2 and M3 beam line:

- 80% of pions have decayed to muons (polarization ~95%)
- 20% beam contamination:

decay e^+ , surviving π^+ , p^+ from the primary beam

Beam purification in energy-dispersive delivery ring: μ^+ outrun p^+ , π^+ decay away

Figure courtesy: M. Convery

M. Fertl - Stavanger, April 22nd 2021

The Fermilab muon campus

M2/M3 optimized to transport positive particles with $p = 3.094 \text{ GeV/c} \pm 2\%$

At the end of M2 and M3 beam line:

- 80% of pions have decayed to muons (polarization ~95%)
- 20% beam contamination:

decay e^+ , surviving π^+ , p^+ from the primary beam

Beam purification in energy-dispersive delivery ring: μ^+ outrun p^+ , π^+ decay away

Pure lepton beam: 60 - 70% μ^+ , 30 - 40% e^+

Figure courtesy: M. Convery

M. Fertl - Stavanger, April 22nd 2021

From Upton, NY to Batavia, IL

M. Fertl - Stavanger, April 22nd 2021

From Upton, NY to Batavia, IL

The superconducting magnet in MC1

Particles from delivery ring

M. Fertl - Stavanger, April 22nd 202'

Magic momentum: $p_{\mu}^{\text{magic}} = 3.094 \,\text{GeV/c} \pm 0.5 \,\%$

JGU

The superconducting magnet in MC1

Particles from delivery ring

M. Fertl - Stavanger, April 22nd 2021

Magic momentum: $p_{\mu}^{\text{magic}} = 3.094 \,\text{GeV/c} \pm 0.5 \,\%$

3 cryostats with 4 superconducting coils (5300 A) 1.45 T vertical magnetic field 90 mm muon storage region 180 mm gap for vacuum chambers 14 JGU

The muon inflector magnet

Particles from delivery ring

M. Fertl - Stavanger, April 22nd 2021

7 Superconducting inflector magnet cancels return B field
 in iron yoke to make muon travel straight!

Field free region

Kick the muons on their storage orbit within one revolution (≈ 150 ns)

M. Fertl - Stavanger, April 22nd 2021

M. Fertl - Stavanger, April 22nd 2021

M. Fertl - Stavanger, April 22nd 2021

JG

M. Fertl - Stavanger, April 22nd 2021

JG

The electrostatic quadrupoles

M. Fertl - Stavanger, April 22nd 2021

Pulsed "electrostatic" quadrupoles

Vertical focusing and confinement of muon beam

Quasi-penning trap cover 43% of the ring

JGU

The electrostatic quadrupoles

M. Fertl - Stavanger, April 22nd 2021

Pulsed "electrostatic" quadrupoles

Vertical focusing and confinement of muon beam

Quasi-penning trap cover 43% of the ring

JGU

The positron calorimeter system

24 calorimeter stations to detect the decay positrons 9 x 6 arrays of PbF₂ crystals (Cherenkov detectors!)

18

JGU

The positron calorimeter system

24 calorimeter stations to detect the decay positrons 9 x 6 arrays of PbF₂ crystals (Cherenkov detectors!)

18

JGU

The positron calorimeter system

M. Fertl - Stavanger, April 22nd 2021

24 calorimeter stations to detect the decay positrons 9 x 6 arrays of PbF₂ crystals (Cherenkov detectors!)

In the muon rest frame

Wiggle plot basics and laser calibration system

Spin precession in muon rest frame

transforms to

above-energy-threshold count rate modulation in laboratory frame

M. Fertl - Stavanger, April 22nd 2021

Wiggle plot basics and laser calibration system

Spin precession in muon rest frame

transforms to

above-energy-threshold count rate modulation in laboratory frame

M. Fertl - Stavanger, April 22nd 2021

Wiggle plot basics and laser calibration system

Spin precession in muon rest frame

transforms to

above-energy-threshold count rate modulation in laboratory frame

Dedicated laser calibration system to ensure energy calibration of calorimeter system

M. Fertl - Stavanger, April 22nd 2021

The straw tracker stations

Determine e⁺ trajectory to decay position and extrapolate to find muon beam distribution!

Input for beam dynamics simulations

The straw tracker stations

M. Fertl - Stavanger, April 22nd 2021

20

GIL

All the analysis is available for you to look at in detail

arXiv:2104.03240v1; Accepted by Phys. Rev. Accel. Beams

Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab

T. Albahri, ³⁸ A. Anast ϵ^{-3}	: 11. а. И. р. J. I 7 с. р 45. b	т. р.:1 19. с. т. л. р	- V1 36				
 T. Barrett,⁶ F. Bedeschi,¹¹ T. Bowcock,³⁸ G. S. P. Chang,^{18, 5} A. Cha L. Cotrozzi,^{11, 31} J. G. Di Sciascio,¹² I M. Farooq,⁴¹ R. Fate 	PHYSICAL REVIEW D 103, 072002 (2021)						
	Editors' Suggestion Featured in Physics						
	Measurement of the anomalous precession frequency of the muon in the Fermilab Muon $g-2$ Experiment						
	T. Albahri, ³⁸ A. Anastasi, ^{11,a} T. Barrett, ⁶ A. Basti, ¹¹ E. Bottalico, ^{11,31} T. Bov S. P. Chang, ^{18,5} A. Chapelai J. D. Crnkovic, ^{3,36,42} S. Da	P Featured in Physics Magnetic-field measur	HYSICAL REVIEW A 103 , 042208 (2021) rement and analysis for the Muon g – 2 Experiment at Fermilab				
		T. Albahri, ³⁹ A. Anastasi, ¹ F. Bedeschi, ¹¹ M. Berz, ²⁰ G. Cantatore, ^{13,34} R. M. Carey	PHYSICAL REVIEW LETTERS 126, 141801 (2021) Editors' Suggestion Featured in Physics				
		R. Chislett, ³⁶ J. Choi, ⁵ Z S. Dabagov, ^{9,∥} P. T. Det V. N. Duginov, ¹⁷ M. Ead A. Fioretti, ^{11,14} D. Flay, ⁴¹ N. S L. K. Gibbons, ⁶ A. Gioios: F. Gray, ²⁴ S. Haciomeroglu, ⁵ T G. Hesketh, ³⁶ A. Hibbert, ³⁷ P. Kammel, ⁴⁸ M. Kargianto	 Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm B. Abi,⁴⁴ T. Albahri,³⁹ S. Al-Kilani,³⁶ D. Allspach,⁷ L. P. Alonzi,⁴⁸ A. Anastasi,^{11,a} A. Anisenkov,^{4,b} F. Azfar,⁴⁴ K. Badgley,⁷ S. Baeßler,^{47,c} I. Bailey,^{19,d} V. A. Baranov,¹⁷ E. Barlas-Yucel,³⁷ T. Barrett,⁶ E. Barzi,⁷ A. Basti,^{11,32} F. Bedeschi,¹¹ A. Behnke,²² M. Berz,²⁰ M. Bhattacharya,⁴³ H. P. Binney,⁴⁸ R. Bjorkquist,⁶ P. Bloom,²¹ J. Bono,⁷ E. Bottalico,^{11,32} T. Bowcock,³⁹ D. Boyden,²² G. Cantatore,^{13,34} R. M. Carey,² J. Carroll,³⁹ B. C. K. Casey,⁷ D. Cauz,^{35,8} S. Ceravolo,⁹ R. Chakraborty,³⁸ S. P. Chang,^{18,5} A. Chapelain,⁶ S. Chappa,⁷ S. Charity,⁷ R. Chislett,³⁶ J. Choi,⁵ Z. Chu,^{26,e} T. E. Chupp,⁴² 				

M. Fertl - Stavanger, April 22nd 2021

M. Fertl - Stavanger, April 22nd 2021

The four Run 1 datasets

Dataset	Date	Field index n ESQ HV [kV]	Kicker HV [kV]	Number of positrons
1a	Apr 22, 2018 - Apr 25, 2018	0.108 18.3	130	0.9 x 10 ⁹
1b	Apr 26, 2018 - May 02, 2018	0.120 20.4	137	1.3 x 10 ⁹
1c	May 04, 2018 - May 12, 2018	0.120 20.4	132	2.0 x 10 ⁹
1d	Jun 06, 2018- Jun 29, 2018	0.108 18.3	125	4.0 x 10 ⁹

M. Fertl - Stavanger, April 22nd 2021

Extracting a_{μ} - the basic idea

External measurements to anchor B and e to other high-precision measurements and calculations

$$a_{\mu} = \frac{\omega_{\rm a}}{\tilde{B}} \frac{m_{\mu}}{e}$$

Extracting a_{μ} - the basic idea

External measurements to anchor B and e to other high-precision measurements and calculations

$$e = \frac{4m_{e}\mu_{e}}{\hbar g_{e}}$$

$$a_{\mu} = \frac{\omega_{a}}{\tilde{B}} \frac{m_{\mu}}{e} = \frac{\omega_{a}}{\tilde{\omega}_{p}'(T_{r})} \frac{\mu_{p}'(T_{r})}{\mu_{e}(H)} \frac{\mu_{e}(H)}{\mu_{e}} \frac{m_{\mu}}{m_{e}} \frac{g_{e}}{2}$$

$$\tilde{B} = \frac{\hbar \tilde{\omega}_{p}'}{2\mu_{p}'}$$

M. Fertl - Stavanger, April 22nd 2021

JGU

External measurements to anchor B and e to other high-precision measurements and calculations

$$a_{\mu} = \frac{\omega_{\mathrm{a}}}{\tilde{B}} \frac{m_{\mu}}{e} = \frac{\omega_{\mathrm{a}}}{\tilde{\omega}_{\mathrm{p}}'\left(T_{\mathrm{r}}\right)} \frac{\mu_{\mathrm{p}}'\left(T_{\mathrm{r}}\right)}{\mu_{\mathrm{e}}\left(H\right)} \frac{\mu_{\mathrm{e}}\left(H\right)}{\mu_{\mathrm{e}}} \frac{m_{\mu}}{m_{\mathrm{e}}} \frac{g_{\mathrm{e}}}{2}$$

M. Fertl - Stavanger, April 22nd 2021

External measurements to anchor B and e to other high-precision measurements and calculations

$$a_{\mu} = \frac{\omega_{\mathrm{a}}}{\tilde{B}} \frac{m_{\mu}}{e} = \frac{\omega_{\mathrm{a}}}{\tilde{\omega}_{\mathrm{p}}'(T_{\mathrm{r}})} \frac{\mu_{\mathrm{p}}'(T_{\mathrm{r}})}{\mu_{\mathrm{e}}(H)} \frac{\mu_{\mathrm{e}}(H)}{\mu_{\mathrm{e}}} \frac{m_{\mu}}{m_{\mathrm{e}}} \frac{g_{\mathrm{e}}}{2}$$

M. Fertl - Stavanger, April 22nd 2021

External measurements to anchor B and e to other high-precision measurements and calculations

$$a_{\mu} = \frac{\omega_{a}}{\tilde{B}} \frac{m_{\mu}}{e} = \frac{\omega_{a}}{\tilde{\omega}_{p}'(T_{r})} \frac{\mu_{p}'(T_{r})}{\mu_{e}(H)} \frac{\mu_{e}(H)}{\mu_{e}} \frac{m_{\mu}}{m_{e}} \frac{g_{e}}{2}$$

M. Fertl - Stavanger, April 22nd 2021

External measurements to anchor B and e to other high-precision measurements and calculations

m_{μ}	Muonium hyperfine splitting
m _e	22 ppb uncertainty
	Phys. Rev. Lett. 82, 11 (1999)

M. Fertl - Stavanger, April 22nd 2021

External measurements to anchor B and e to other high-precision measurements and calculations

Bound state QED calculation 10.5 ppb uncertainty $\mu_{\rm e}(H)$ $\frac{\mu_{\rm p}'(T_{\rm r})}{}$ at $T_r = 34.7^{\circ}C$ exact $\mu_{\rm e}$ Metrologia 13, 179 (1977) Rev. Mod. Phys. 88, 035009 (2016) $a_{\mu} = \frac{\omega_{\mathrm{a}}}{\tilde{B}} \frac{m_{\mu}}{e} = \frac{\omega_{\mathrm{a}}}{\tilde{\omega}_{\mathrm{p}}'(T_{\mathrm{r}})} \frac{\mu_{\mathrm{p}}'(T_{\mathrm{r}})}{\mu_{\mathrm{e}}(H)} \frac{\mu_{\mathrm{e}}(H)}{\mu_{\mathrm{e}}} \frac{m_{\mu}}{m_{\mathrm{e}}} \frac{g_{\mathrm{e}}}{g_{\mathrm{e}}}$ m_{μ} Muonium hyperfine splitting Measurement with $\frac{g_{\rm e}}{2}$ 22 ppb uncertainty 0.28 ppt uncertainty $m_{\rm e}$ Phys. Rev. Lett. 82, 11 (1999) Phys. Rev. A 83, 052122 (2011)

External measurements to anchor B and e to other high-precision measurements and calculations

Extracting a_µ - our challenge

$$a_{\mu} = \frac{\omega_{a}}{\tilde{B}'} \frac{m_{\mu}}{e} = \frac{\omega_{a}}{\tilde{\omega}_{p}'(T_{r})} \frac{\mu_{p}'(T_{r})}{\mu_{e}(H)} \frac{\mu_{e}(H)}{\mu_{e}} \frac{m_{\mu}}{m_{e}} \frac{g_{e}}{2}$$

M. Fertl - Stavanger, April 22nd 2021

JG

Extracting a_{μ} - our challenge

$$a_{\mu} = \frac{\omega_{\mathrm{a}}}{\tilde{B}'} \frac{m_{\mu}}{e} = \frac{\omega_{\mathrm{a}}}{\tilde{\omega}_{\mathrm{p}}'(T_{\mathrm{r}})} \frac{\mu_{\mathrm{p}}'(T_{\mathrm{r}})}{\mu_{\mathrm{e}}(H)} \frac{\mu_{\mathrm{e}}(H)}{\mu_{\mathrm{e}}} \frac{m_{\mu}}{m_{\mathrm{e}}} \frac{g_{\mathrm{e}}}{2}$$

$$R' = \frac{\omega_{a}}{\tilde{\omega}'_{p}} = \frac{f_{clock} \,\omega_{a}^{meas} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{calib} \left\langle M\left(x, y, \phi\right) \,\omega_{p}\left(x, y, \phi\right) \right\rangle \left(1 + B_{k} + B_{q}\right)}$$

M. Fertl - Stavanger, April 22nd 2021

Extracting a_{μ} - our tools

$$R' = \frac{\omega_{\rm a}}{\tilde{\omega}_{\rm p}'} = \frac{f_{\rm clock} \,\omega_{\rm a}^{\rm meas} \left(1 + C_{\rm e} + C_{\rm p} + C_{\rm ml} + C_{\rm pa}\right)}{f_{\rm calib} \left\langle M\left(x, y, \phi\right) \,\omega_{\rm p}'\left(x, y, \phi\right) \right\rangle \left(1 + B_{\rm k} + B_{\rm q}\right)}$$

M. Fertl - Stavanger, April 22nd 2021

The master formula and the uncertainty table

$$R' = \frac{\omega_{a}}{\omega_{p}'} = \frac{f_{\text{clock}} \,\omega_{a}^{\text{meas}} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle M\left(x, y, \phi\right) \,\omega_{p}'\left(x, y, \phi\right) \right\rangle \left(1 + B_{k} + B_{q}\right)}$$

			by statistics!
Quantity	Correction Terms	Uncertainty	by statistics:
	(ppb)	(ppb)	
ω_a^m (statistical)	_	434	
ω_a^m (systematic)	.—	56	
C_e	489	53	Already surpassed the
C_p	180	13	anticipated goal!
$\dot{C_{ml}}$	-11	5	
C_{pa}	-158	75	
$f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle$	-	56	
B_k	-27	37	Work in progress
B_q	-17	92	for runs 2 El
$\mu_{p}'(34.7^{\circ})/\mu_{e}$	-	10	
m_{μ}/m_e	—	22	
$g_e/2$	—	0	
Total systematic	_	157	
Total fundamental factors	-	25	Total uncertainty
Totals	544	462	dominated by statistics!

M. Fertl - Stavanger, April 22nd 2021

Uncertainty dominated

J

Histogram of decay e⁺ arrival times (wiggle plot)

3 independent event reconstruction schemes11 different and independent analyses6 independent groups

M. Fertl - Stavanger, April 22nd 2021

Histogram of decay e⁺ arrival times (wiggle plot)

3 independent event reconstruction schemes11 different and independent analyses6 independent groups

Complex beam dynamics encoded in wiggle plot

M. Fertl - Stavanger, April 22nd 2021

Histogram of decay e⁺ arrival times (wiggle plot)

3 independent event reconstruction schemes11 different and independent analyses6 independent groups

Complex beam dynamics encoded in wiggle plot

M. Fertl - Stavanger, April 22nd 2021

Separate analyses for Runs 1a-1d

Extensive systematic checks passed:

→ "Software" unblinding to check consistency, hardware blinding still in place

Histogram of decay e⁺ arrival times (wiggle plot)

3 independent event reconstruction schemes11 different and independent analyses6 independent groups

Complex beam dynamics encoded in wiggle plot

M. Fertl - Stavanger, April 22nd 2021

Separate analyses for Runs 1a-1d

Extensive systematic checks passed:

→ "Software" unblinding to check consistency, hardware blinding still in place

Histogram of decay e⁺ arrival times (wiggle plot)

3 independent event reconstruction schemes11 different and independent analyses6 independent groups

Complex beam dynamics encoded in wiggle plot

M. Fertl - Stavanger, April 22nd 2021

Separate analyses for Runs 1a-1d

Extensive systematic checks passed:

→ "Software" unblinding to check consistency, hardware blinding still in place

The long-known corrections: E-field and pitch correction

$$\overrightarrow{\omega}_{a} = \overrightarrow{\omega}_{s} - \overrightarrow{\omega}_{c} = -\frac{e}{m} \left[a_{\mu} \overrightarrow{B} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\overrightarrow{\beta} \cdot \overrightarrow{B} \right) \overrightarrow{\beta} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\overrightarrow{\beta} \times \overrightarrow{E}}{c} \right]$$

M. Fertl - Stavanger, April 22nd 2021

The long-known corrections: E-field and pitch correction

$$\overrightarrow{\omega}_{a} = \overrightarrow{\omega}_{s} - \overrightarrow{\omega}_{c} = -\frac{e}{m} \left[a_{\mu} \overrightarrow{B} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\overrightarrow{\beta} \cdot \overrightarrow{B} \right) \overrightarrow{\beta} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\overrightarrow{\beta} \times \overrightarrow{E}}{c} \right]$$

The long-known corrections: E-field and pitch correction

$$\overrightarrow{\omega}_{a} = \overrightarrow{\omega}_{s} - \overrightarrow{\omega}_{c} = -\frac{e}{m} \left[a_{\mu} \overrightarrow{B} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\overrightarrow{\beta} \cdot \overrightarrow{B} \right) \overrightarrow{\beta} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\overrightarrow{\beta} \times \overrightarrow{E}}{c} \right]$$

M. Fertl - Stavanger, April 22nd 2021

JG L

$$N(t) \approx N_0 e^{-\lambda t} \left[1 + A \cos \left(\omega_{\rm a} t + \phi \right) \right]$$

If the phase of the muon ensemble is not stable, then:

$$\cos\left(\omega_{a}t + \phi_{0} + \phi't + \dots\right) = \cos\left((\omega_{a} + \phi')t + \phi_{0} + \dots\right)$$

A possible frequency shift of ϕ'

$$N(t) \approx N_0 e^{-\lambda t} \left[1 + \cos(\omega_a t + \phi) \right]$$

If the phase of the muon
$$\cos(\omega_a t + \phi_0 + \cos^{-\lambda t} e^{-t}) = \cos((\omega_a + \phi')t + \phi_0 + \dots)$$

$$\cos(\omega_a t + \phi_0 + \cos^{-\lambda t} e^{-\lambda t}) = \cos((\omega_a + \phi')t + \phi_0 + \dots)$$

$$\cos(\omega_a t + \phi_0 + \cos^{-\lambda t} e^{-\lambda t}) = \cos(\omega_a t + \phi')t + \phi_0 + \dots)$$

Phase acceptance correction: The voltage on the ESQs

Systematic effect unique for Run 1 data (hardware fixed for run 2 and beyond):

- 2 high-voltage isolators for ESQ failed
- Time-dependent E-Field of on 2 ESQ plates
 → Change of vertical beam position and width

Phase acceptance correction: The voltage on the ESQs

Phase acceptance correction: The voltage on the ESQs

Another early-to-late effect:

 $\cos\left(\omega_{\mathbf{a}}t + \phi_0 + \phi't + \dots\right) = \cos\left((\omega_{\mathbf{a}} + \phi')t + \phi_0 + \dots\right)$

M. Fertl - Stavanger, April 22nd 2021

Another early-to-late effect:

$$\cos\left(\omega_{a}t + \phi_{0} + \phi't + \dots\right) = \cos\left((\omega_{a} + \phi')t + \phi_{0} + \dots\right)$$

$$\frac{d\phi_0}{dt} = \frac{d\phi_0}{d\langle p \rangle} \frac{d\langle p \rangle}{dt}$$

Another early-to-late effect:

$$\cos\left(\omega_{a}t + \phi_{0} + \phi't + \dots\right) = \cos\left((\omega_{a} + \phi')t + \phi_{0} + \dots\right)$$

$$\frac{d\phi_0}{dt} = \frac{d\phi_0}{d\langle p \rangle} \frac{d\langle p \rangle}{dt}$$

Spin-momentum correlation from dipole magnets in beamline

M. Fertl - Stavanger, April 22nd 2021

Another early-to-late effect:

$$\cos\left(\omega_{a}t + \phi_{0} + \phi't + \dots\right) = \cos\left((\omega_{a} + \phi')t + \phi_{0} + \dots\right)$$

$$\frac{d\phi_0}{dt} = \frac{d\phi_0}{d\langle p \rangle} \frac{d\langle p \rangle}{dt}$$

Spin-momentum correlation

Momentum dependent losses High-p muons lost faster!

M. Fertl - Stavanger, April 22nd 2021

33

JGU

Another early-to-late effect:

$$\cos\left(\omega_{a}t + \phi_{0} + \phi't + \dots\right) = \cos\left((\omega_{a} + \phi')t + \phi_{0} + \dots\right)$$

$$\frac{d\phi_0}{dt} = \frac{d\phi_0}{d\langle p \rangle} \frac{d\langle p \rangle}{dt}$$

Time-dependent phase shift

Spin-momentum correlation from dipole magnets in beamline

M. Fertl - Stavanger, April 22nd 2021

Momentum dependent losses High-p muons lost faster!

33

JG|U

Another early-to-late effect:

$$\cos\left(\omega_{a}t + \phi_{0} + \phi't + \dots\right) = \cos\left((\omega_{a} + \phi')t + \phi_{0} + \dots\right)$$

$$\frac{d\phi_0}{dt} = \frac{d\phi_0}{d\langle p \rangle} \frac{d\langle p \rangle}{dt}$$

Time-dependent phase shift

Spin-momentum correlation from dipole magnets in beamline

Correction: -11 ppb, Uncertainty: 5 ppb

M. Fertl - Stavanger, April 22nd 2021

Extracting a_{μ} : the magnetic field distribution and calibration

$$R' = \frac{\omega_{a}}{\omega_{p}'} = \frac{f_{clock} \,\omega_{a}^{meas} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{calib} \left\langle M\left(x, y, \phi\right) \overline{\omega_{p}'\left(x, y, \phi\right)} \right\rangle \left(1 + B_{k} + B_{q}\right)}$$

M. Fertl - Stavanger, April 22nd 2021

The magnetic field calibration chain

M. Fertl - Stavanger, April 22nd 2021

The precision magnetic field: passive shimming

Adjust the position and orientation of pole pieces, wedged pieces (iron) to minimize the field inhomogeneities

The precision magnetic field: passive shimming

Adjust the position and orientation of pole pieces, wedged pieces (iron) to minimize the field inhomogeneities

The precision magnetic field: passive shimming

Novel to E989: Provide about 10000 iron foil strips to shim out the residual magnetic field inhomogeneities

The precision magnetic field: passive shimming

Novel to E989: Provide about 10000 iron foil strips to shim out the residual magnetic field inhomogeneities

Factor 3 better homogeneity after passive shimming

M. Fertl - Stavanger, April 22nd 2021

The precision magnetic field: spatial mapping

The precision magnetic field: spatial mapping

M. Fertl - Stavanger, April 22nd 2021

The precision magnetic field: spatial mapping

M. Fertl - Stavanger, April 22nd 2021

1.0

0.5

0.0

-0.5

-1.0

JG

JG|U

Established relation between multipoles measured by fixed probe stations and trolley

M. Fertl - Stavanger, April 22nd 2021

Established relation between multipoles measured by fixed probe stations and trolley

Tracking of the temporal variations of fixed probe stations

M. Fertl - Stavanger, April 22nd 2021

Established relation between multipoles measured by fixed probe stations and trolley

Tracking of the temporal variations of fixed probe stations

Application of correction for residual relative drifts

M. Fertl - Stavanger, April 22nd 2021

Established relation between multipoles measured by fixed probe stations and trolley

Tracking of the temporal variations of fixed probe stations

Application of correction for residual relative drifts

M. Fertl - Stavanger, April 22nd 2021

Established relation between multipoles measured by fixed probe stations and trolley

Tracking of the temporal variations of fixed probe stations

Application of correction for residual relative drifts

M. Fertl - Stavanger, April 22nd 2021

Extracting a_{μ} : the muon weighted average magnetic field

$$R' = \frac{\omega_{a}}{\omega_{p}'} = \frac{f_{clock} \,\omega_{a}^{meas} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{calib} \left(M\left(x, y, \phi\right) \,\omega_{p}'\left(x, y, \phi\right)\right) \left(1 + B_{k} + B_{q}\right)}$$

M. Fertl - Stavanger, April 22nd 2021

JG U

$$R' = \frac{\omega_{a}}{\omega_{p}'} = \frac{f_{\text{clock}} \,\omega_{a}^{\text{meas}} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle M\left(x, y, \phi\right) \,\omega_{p}'\left(x, y, \phi\right) \right\rangle \left(1 + B_{k} + B_{q}\right)}$$

M. Fertl - Stavanger, April 22nd 2021

Transients from electrostatic quadrupoles (ESQ)

ESQ only static on the time scale of an muon beam bunch injection:

- Pulsing with high-voltage:
 - \rightarrow mechanical vibrations of electric conductors
 - \rightarrow perturbation of B field

M. Fertl - Stavanger, April 22nd 2021

Transients from electrostatic quadrupoles (ESQ)

ESQ only static on the time scale of an muon beam bunch injection:

- Pulsing with high-voltage:
 - ightarrow mechanical vibrations of electric conductors
 - \rightarrow perturbation of B field
- Measurement only after Run 2 \rightarrow Conservative limit
- Included pNMR probe head in special casing (non conductive)
- Perform beam synchronized measurements

Transients from electrostatic quadrupoles (ESQ)

Correction: 17 ppb

ESQ only static on the time scale of an muon beam bunch injection:

- Pulsing with high-voltage:
 - \rightarrow mechanical vibrations of electric conductors
 - \rightarrow perturbation of B field
- Measurement only after Run 2 \rightarrow Conservative limit
- Included pNMR probe head in special casing (non conductive)
- Perform beam synchronized measurements

$$R' = \frac{\omega_{a}}{\omega_{p}'} = \frac{f_{\text{clock}} \,\omega_{a}^{\text{meas}} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle M\left(x, y, \phi\right) \,\omega_{p}'\left(x, y, \phi\right) \right\rangle \left(1 + B_{k} + B_{q}\right)}$$

M. Fertl - Stavanger, April 22nd 2021

Magnetic field transients from kicker magnet

Powerful kicker magnet induces eddy current in vacuum chamber walls:

Faraday magnetometer:

- fiber-based
- non-conducting
- non-magnetic
- 3D printed structure

Faraday magnetometer

Magnetic field transients from kicker magnet

Powerful kicker magnet induces eddy current in vacuum chamber walls:

Faraday magnetometer:

- fiber-based
- non-conducting
- non-magnetic
- 3D printed structure

Kicker plates

Faraday magnetometer

IGIU

Magnetic field transients from kicker magnet

Powerful kicker magnet induces eddy current in vacuum chamber walls:

Faraday magnetometer:

- fiber-based
- non-conducting
- non-magnetic
- 3D printed structure

Kicker plates

Faraday magnetometer

Signal modeled as a single exponential function: $\Delta B(t) = \Delta B(0) e^{-t/\tau_k}$

Effect weighted by:

- kicker coverage
- spatial muon distribution

M. Fertl - Stavanger, April 22nd 2021

Extracting a_{μ} - our tools

Extracting a_{μ} - our tools

The hardware blinding of the $\omega_{\rm a}^{ m meas}$ data

• Hardware: Detuning of 40 MHz reference clock in the range of ± 25 ppm(!)

Greg Bock and Joe Lykken blinding the clock in 2018

- Software: unknown offset for ω_{a} analysis

After putting it all together, we are ready to unblind

February 25th, 2021

The 40 MHz clock was set really set to: 39 99X XXX MHz

M. Fertl - Stavanger, April 22nd 2021

Breaking the seals...

M. Fertl - Stavanger, April 22nd 2021

Breaking the seals...

M. Fertl - Stavanger, April 22nd 2021

 $a_{\mu}(BNL) = 0.00116592089(63) \rightarrow 540 \text{ ppb}$ $a_{\mu}(FNAL, R1) = 0.00116592040(54) \rightarrow 463 \text{ ppb}$ Both experiments uncertainty dominated by statistics: $a_{\mu}(Exp) = 0.00116592061(41) \rightarrow 350 \text{ ppb}$ $a_{\mu}(SM) = 0.00116591810(43) \rightarrow 350 \text{ ppb}$

4.2 σ discrepancy between experiment and community approved SM prediction

Outlook to the future

Summary and Conclusions

- We have determined a_{μ} with unprecedented 460 ppb precision!
- The Run 1 results represent:
 - 6% of ultimate data sample
 - 15% smaller uncertainty than BNL
 - \bullet 3.3 σ tension with SM
- After 20 years, we confirm the BNL results
- Combined result shows a 4.2 σ tension with SM prediction

