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Exercise 1: Bayes Theorem Warmup

Your detector correctly records the passage of a beyond-standard-model (BSM) particle 99.9%
of the time. It however misidentifies an ordinary standard-model (SM) particle as BSM with
1%. Given that the occurrence of BSM particles is low with around 0.1% probability, how
probable is it that a single detection corresponds to a BSM particle?

Exercise 2: Maximum Likelihood Estimator

When we compute the expectation value of observables in lattice QCD we often use the mean
as an approximation ⟨D⟩ ≈ 1

N

∑
kDk . This prescription is based on the assumption that the

data is normal distributed D ∼ N (µ, σ) and corresponds to the so-called maximum likelihood
estimator (MLE) of the parameter µ. The maximum likelihood estimator is chosen, as it is
robust and equivariant.

Now consider instead a log-normal distributed set of data D = exp(D̃), with D̃ ∼ N (µ, σ)
(c.f. [1]). The probability density function of D is

pdf(D) =
1
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√
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]
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a) Guess the result for the MLE for the parameter µ of the distribution D, given your knowl-
edge about the optimal Gaussian MLE.

b) Derive the MLE µMLE for the parameter µ of the log-normal distribution from its definition

∂

∂µ
log[L[D|µ, σ]]

∣∣∣∣
µ=µMLE

= 0

as the maximum of the log of the likelihood, where D = D1, D2, D3, . . . , DN denotes a
set of independent measurements from the distribution.

Exercise 3: Bayesian Updating

Take the Poisson distribution as a model for the incidence of laser photons in a detector,
measured over a constant time interval (i.e. independent counts c with mean count of λ)

P(c, λ) =
1

c!
λce−λ (2)
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This distribution describes the data generation process and thus corresponds to the likelihood
probability.

The laser system you are inspecting is labelled with a rate rprior = λprior/∆t. To make
sure that you have an accurate estimate of the rate, you are performing several count mea-
surements and wish to update your knowledge on λ starting from λprior. Since the mean
counts are positive definite you can use e.g. the Gamma distribution prior for computational
convenience

Γ(z;a, b) =
ba

Γ(a)
za−1exp[−bz], z ∈ (0,∞) (3)

a) What is ⟨z⟩Γ and ⟨z2⟩Γ?

b) Show that the resulting posterior is P(λ|c) ∝ Γ(λ;a+ c, b+ 1)

c) How do repeated count measurements improve the estimate for λ (and reduce the in-
fluence of the prior)?

Exercise 3: Non-informative Jeffrey’s Priors

Jeffrey’s prior for a parameter θ of a probability distribution P(x; θ) is defined via the so-called
Fisher information matrix IPF (θ)

JP(θ) ∝
√
det[IPF (θ). (4)

In the one dimensional case we have

IPF (θ) = ⟨
( ∂

∂θ
log[P(x, θ)]

)2⟩. (5)

Derive and interpret Jeffrey’s prior for each of the two parameters µ and σ of the normal
distribution.

Exercise 4: Linear Regression with MC STAN

In this exercise you are going to use the MC STAN library to carry out both maximum likelihood
fitting of different linear models to data, as well as a full-fledged Bayesian analysis including
estimation of model uncertainties via information criteria.

a) You need to install the package cmdstanpy, arviz and xarray via your Python package
manager, e.g. pip. Then install cmdstan using the command line prompt install_cmdstan.

b) Download the Jupyter Notebook at
http://alexrothkopf.de/assets/files/LinearModellingSTAN.ipynb
and verify the different analysis steps.

Exercise 5: BR Prior for Spectral Function Reconstruction

The prior probability in Bayesian inference encodes a distance between the values of the cur-
rent estimate of the model parameters (i.e. the values ρl of the spectral function in each
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frequency bin l) from the prior expectation encoded in the default model ml. One sug-
gestion for a distance is the Shannon-Jaynes entropy log[P(ρ, I(m,α))] = S[ρ,m,α] =∫
dωα(ω)

(
ρ(ω)−m(ω)−ρ(ω)log

[
ρ(ω)
m(ω)

])
used in the Maximum-Entropy-Method (MEM). It

is justified in [2] from information theoretical grounds, to avoid introducing correlations among
the ρl’s besides those encoded in the data.

Here you will explore a different distance, based on the Gamma distribution, which was
proposed in [3]. Instead of limiting what correlations the prior can imprint among the ρl it sets
out to use prior knowledge to imprint those correlations in the ρl.

The corresponding distance functional SBR[ρ, I(m,α)] is based on the following four ax-
ioms: subset independence: prior information about ρ at different frequencies should be
additively combined in SBR. scale invariance: since the spectral function is not a probability
distribution and thus carries units, the prior must be formulated such that the units do not
influence the end result. smoothness: The distance should be measured in the deviation be-
tween neighboring spectral function bins, say ρl and ρl+1, where distance should not depend
on whether one is larger or the other. bayesian meaning: as the prior encodes all knowledge
before the arrival of new data, the most probable spectral function apriori should be given by
the default model.

By making the ansatz SBR[ρ, I(m,α)] =
∫
dωα(ω)s(ρ(ω),m(ω)) derive the BR prior

from the above axioms, explicitly constructing the quantity s(ρ(ω),m(ω)).

Exercise 6: Lattice QCD Spectral Functions with MC STAN

In this exercise you are going to use the MC STAN library to carry out a fully Bayesian spectral
function reconstruction based on real-world NRQCD correlator data.

a) Download the Jupyter Notebook at
http://alexrothkopf.de/assets/files/SpectralFunctionReconstrcutionSTAN.
ipynb
as well as the lattice data at
http://alexrothkopf.de/assets/files/TstDataNRQCDb66641SBottom.zip
and verify the different analysis steps.
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